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Abstract 

The permutational character of degenerate single and double dsd and of degenerate 
4, 5-pyramidal processes is obtained for the heptacoordinate deltahedra. The symmetry 
properties of the paths of steepest descent and transition states of these rearrangements 
are derived. From this permutational character, it would be possible to investigate the 
compatibility of these processes with the results of NMR line shape analysis of the 
dynamics of heptacoordinate complexes. This possibility is briefly discussed. 

1. In t roduct ion  

Permutational analysis of the static and dynamic stereochemistry of ML n complexes 
(M = central atom, L = ligand) has been used extensively in recent years. In this 
method, the n ! permutations of the ligands on the sites of the molecular skeleton give 
rise to 

n! (1) 
P =  IAI 

configurations. Interconversions of these configurations are described by modes of 
rearrangements. The number of such modes is 

z _ n! ,A[ [GI "7' ~" { .Ancy l2 lAcrc~cy l2  } , C y l  + ICyl " (2) 

Details about these concepts may be found in, for instance, refs. [1-3] .  In the above 
formula, A and G denote the group of  proper symmetry operations of the molecular 
skeleton and its point group: 

G = A u A ~ ,  

where ty is any improper operation, Cy are the classes of  S n, the symmetric group of 
degree n, and I A [ is the order of A. The symbols u and n refer to union and inter- 
section, respectively. 
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The number of configurations and the number of modes increase rapidly when 
n jumps from 5 or 6 to 7. For instance, if we calculate them for trigonal bipyramidal 
(n = 5), octahedral (n = 6) and pentagonal bipyramidal (n - 7) geometries, we find, 
respectively, p = 20, 30 and 504 and z = 6, 5 and 40. For this reason, a systematic 
and exhaustive permutational analysis of the dynamic stereochemistry o fML 7 complexes 
seems impracticable. 

A different and interesting point of  view has been developed by King [4,5]: 
the ML n complexes are described as n-vertex polyhedra. The polyhedra having only 
triangular faces are supposed to be energetically favoured. These so-called deltahedra 
interconvert through dsd processes, which involve removal and subsequent addition 
of an edge (see fig. 1). 

a a a 

b 0 0 

Fig. 1. The single dsd process. 

Such processes are also energetically favoured since only two triangular faces 
are lost and replaced by a quadrilateral face in the intermediate state. King's assumptions 
described above are based on a previous structural and mechanistic study of  boranes 
and carboranes [61. 

King has established the list of single and double degenerate dsd for heptacoordinate 
deltahedra [5]. In such degenerate dsd, the starting and final deltahedra are identical, 
up to a permutation or a permutation-inversion of the vertices, i.e. they correspond 
to a permutational mode of rearrangements [3]. 

In the present paper, we determine the permutational character [3] of  the 
degenerate single and double dsd listed by King. As we will see, some of these 
double dsd can only give rise to a final configuration which is identical to the starting 
one. Such processes do not give rise to ligand scrambling (they are described by the 
identity permutation). The remaining processes are the only interesting ones in view 
of their comparison with the NMR line shape analysis on heptacoordinate deltahedra. 

2. The dsd mechanisms 

We first recall the list of 34 polyhedra with seven vertices. This has been 
obtained by Britton and Dunitz [7], and derived independently by King [5] 
from the 34 polyhedra with seven faces [8]. The 34 polyhedra having seven vertices 
are displayed in table 1. The columns BD and K refer to the numbers used by 
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Table 1 

The 34 polyhedra 

vi fi ekl 

BD 6 5 4 3 6 5 4 3 33 34 35 36 44 45 46 55 56 66 K SYM 

1 1 3 0 3 0 0 0 10 0 0 6 3 0 0 0 3 3 0 #12 c3v 

2 2 0 3 2 0 0 0 10 0 2 0 4 2 0 6 0 0 1 #11 c2v 

3 1 2 2 2 0 0 0 10 0 2 2 2 0 4 2 1 2 0 #13 c 2 

4 0 3 3 1 0 0 0 10 0 0 3 0 3 6 0 3 0 0 #20 c3v 

5 0 2 5 0 0 0 0 10 0 0 0 0 5 10 0 0 0 0 #23 Dsh 

6 1 1 2 3 0 0 1 8 0 4 2 3 0 2 2 0 1 0 #14 C, 

7 1 1 2 3 0 0 1 8 1 2 2 3 1 2 2 0 1 0 #15 C l 

8 0 3 1 3 0 0 1 8 1 1 6 0 0 3 0 3 0 0 #21 (7, 

9 0 3 1 3 0 0 1 8 0 2 7 0 0 2 0 3 0 0 #22 C, 

10 1 0 4 2 0 0 1 8 0 4 0 2 4 0 4 0 0 0 #16 Czv 

11 0 2 3 2 0 0 1 8 0 2 4 0 2 6 0 0 0 0 #24 C~ 

12 0 2 3 2 0 0 1 8 0 3 3 0 2 5 0 1 0 0 #25 C~ 

13 0 1 5 l 0 0 1 8 0 2 1 0 7 4 0 0 0 0 #28 C~ 

14 1 0 2 4 0 1 0 7 2 4 0 4 1 0 2 0 0 0 #17 C~ 

15 0 1 3 3 0 1 0 7 ! 5 2 0 2 3 0 0 0 0 #29 C, 

16 1 0 2 4 0 0 2 6 2 4 0 4 1 0 2 0 0 0 #18 Czv 

17 0 2 1 4 0 0 2 6 2 2 6 0 0 2 0 1 0 0 #26 C 1 

18 0 2 1 4 0 0 2 6 2 2 6 0 0 2 0 1 0 0 #27 C z 

19 0 1 3 3 0 0 2 6 1 4 3 0 3 2 0 0 0 0 #33 C 1 

20 0 1 3 3 0 0 2 6 1 5 2 0 2 3 0 0 0 0 #32 C l 

21 0 1 3 3 0 0 2 6 0 7 2 0 1 3 0 0 0 0 #30 C~ 

22 0 1 3 3 0 0 2 6 0 6 3 0 2 2 0 0 0 0 #31 C, 

23 0 0 5 2 0 0 2 6 1 4 0 0 8 0 0 0 0 0 #36 C2v 

24 0 0 5 2 0 0 2 6 0 6 0 0 7 0 0 0 0 0 #37 C 2 

25 1 0 0 6 1 0 0 6 6 0 0 6 0 0 0 0 0 0 #19 C6~ 

26 0 1 1 5 0 1 1 5 4 3 4 0 0 1 0 0 0 0 #34 C l 

27 0 0 3 4 0 1 1 5 3 6 0 0 3 0 0 0 0 0 #38 C s 

28 0 1 1 5 0 0 3 4 4 3 4 0 0 1 0 0 0 0 #35 C s 

29 0 0 3 4 0 0 3 4 3 6 0 0 3 0 0 0 0 0 #40 C3v 

30 0 0 3 4 0 0 3 4 2 8 0 0 2 0 0 0 0 0 #42 C l 

31 0 0 3 4 0 0 3 4 2 8 0 0 2 0 0 0 0 0 #41 C z 
32 0 0 3 4 0 0 3 4 3 6 0 0 3 0 0 0 0 0 #39 C3v 

33 0 0 1 6 0 1 2 3 7 4 0 0 0 0 0 0 0 0 #43 C~ 

34 0 0 1 6 0 0 4 2 7 4 0 0 0 0 0 0 0 0 #44 C2v 

B r i t t o n - D u n i t z  and K i n g ,  r e s p e c t i v e l y .  In t he  p r e s e n t  p a p e r ,  w e  w i l l  d e n o t e  p o l y h e d r o n  

12 in  K i n g ' s  n u m b e r i n g  by  # 12. T h e  las t  c o l u m n  g i v e s  the  m a x i m u m  p o s s i b l e  s y m m e t r y  

o f  e a c h  p o l y h e d r o n ,  i .e.  t he  s y m m e t r y  o f  t h e  g r a p h  r e p r e s e n t i n g  t h e  p o l y h e d r o n .  T h e  

s y m b o l s  v i , f j  and  ekt a re ,  r e s p e c t i v e l y ,  the  n u m b e r  o f  v e r t i c e s  o f  d e g r e e  i, t h e  n u m b e r  
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of faces having j edges, and the number of edges connecting vertices of degree k and 
I. Note that these three sets of numbers are the same for #26 and #27. These polyhedra 
differ by the symmetry of their graphs and by the fact that their two edges connecting 
vertices of degree three are connected in #26 and disconnected in #27. 

Now let us focus on #11, #12, #13, #20, #23, which are deltahedra, i.e. they 
have only triangular faces. Let v, e, f be the number of vertices, edges and faces, 
respectively. The Euler relation e + 2 = f + v, valid for convex polyhedra, and the 
relation 2e = 3f, valid for deltahedra, impose f =  10 and e = 15 for heptacoordinate 
deltahedra. The five deltahedra are represented in fig. 2, where the vertices have been 
numbered for further use. 

3 1 

3 ~ 6  2 

7' 1 7 3 4 
6 1 

~12 ~13 
4 

7 1 ~ 6 2  3 ~6 

5 2 
~20 =*23 

Fig. 2. The five deltahedra. 

From each of these deltahedra, we now remove two edges. After removal of 
the first one, the resulting polyhedron has 1 quadrilateral and 8 triangular faces (# 14, 
#15, #16, #21, #22, #24, #25, #28). After removal of the second edge, it possesses 
either 2 quadrilateral faces and 6 triangular ones (# 18, #26, #27, #30, #31, #32, #33, 
#36, #37) or 1 pentagonal and 7 triangular faces (# 17, #29). These double edge removals 
are best represented [9] by a directed graph whose vertices are the polyhedra and 
whose directed edges (arrows) represent polyhedron edge removal (see fig. 3). This 
graph is easy to obtain from table 1 in reL [5] or from table 1 in ref. [7]. Note that 
in fig. 3, the vertices with an asterisk denote a pair of enantiomeric polyheclra. 

We notice that 1 or 2 arrows end at the polyheclra having 1 quadrilateral face 
and 8 triangular faces (type II in fig. 3). Indeed, the quadrilateral face can be diagonalised 
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II 

Fig. 3. Polyhedron edge removals. 

@ 
III 

in two ways, leading back to 2 deltahedra which can be either distinct or identical, 
up to a permutation or a permutation-inversion of  the vertices. In the second case, 
the transformation leading from one of  the deltahedra to the other with an intermediate 
of  type II is clearly a degenerate single dsd. From fig. 3, it appears that there are two 
such possibilities: 

#13 ---> #16 ---> #13 

#13 ---) #21 ---) #13. (3) 

A similar argument may be used to find degenerate processes leading from one 
deltahedron to another with an intermediate of  type III. If this intermediate has two 
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quadrilateral faces, the process is a degenerate double dsd. If it has a pentagonal face, 
the process is a so-called degenerate 4-pyramidal combined with a 5-pyrarnidal 
process [5] (in short, 4, 5-pyramidal process). 

Complete diagonalisation of a polyhedron of type III and having two quadrilateral 
faces may be realised in eight ways. Indeed, the first diagonal can be added in four 
ways and the second quadrilateral face can be diagonalised in two ways. If two ways 
differ only by the order in which two given diagonals are added, they lead to the same 
deltahedron. Hence, the paths leading to a given polyhedron of type III and having 
two quadrilateral faces start from at most four deltahedra. In a similar way, one 
shows that the number of starting deltahedra leading to a polyhedron of type III with 
one pentagonal face is at most five. These starting deltahedra are listed in table 2 for 

Table 2 

Starting polyhedra (noted +) for each polyhedron of type III 

Polyhedron Starting deltahedron 

of type III 

#11 #12 #13 #20 #23 

#18 + 

#26 + + 

#27 + 

#30 + 

#31 + + 

#32 

#33 + 

#36 

#37 

#17 + + 

#29 

+ 

-t- 

+ 

+ 

+ 

+ 

+ 

+ 

+ + 

4- + 

+ 

+ + 

+ + 

+ + 

+ + 

each polyhedron of type III. If the number of starting deltahedra is less than four 
(five, if a pentagonal face is involved), there exists a possibility of degenerate double 
dsd (or of a 4, 5-pyramidal degenerate process). Such possibilities do not exist with 
#26, #31 and #33 as intermediates, as shown by table 2. 

From table 2, the remaining possibilities are listed below: 

#11 ~ # 1 8  ~ #11 1 
#13 ~ #18 ~ #13 1 

#11 ~ #27 ~ #11 
#13 --> #27 ~ #13 t 
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#12 ---) #30 ---) #12 
#20 ---) #30 ~ #20 t 
#23 --) #30 ---) #23 

#13 --) #32 ---) #13 t 
#20 ---) #32 ---) #20 

#20 ---) #36 ---) #20 t 
#23 ---) #36 ---) #23 t 

#13 --) #37 ---) #13 
#20 --) #37 ---) #20 t 
#23 --) #37 --) #23 

#11 ---) #17 ---) #11 t 
#12 --) #17 ---) #12 
#13 --) #17 --) #13 

#13 --) #29 ---) #13 
#20 --) #29 ---) #20 t 
#23 ---) #29 --) #23 (4) 

3. Pe rmuta t iona l  cha rac te r  of  dsd mechan isms  

In this section, we establish the permutational character of  the possible dsd 
mechanism listed in eqs. (3) and (4). 

The degenerate single dsd starting from deltahedra and listed in eq. (3) are 
represented in fig. 4. The maximum symmetry of each polyhedron is indicated (see 
table 1). The crosses indicate the edges of  the starting (left) or final (right) deltahedra 
that do not appear in the intermediate state (center) (polyhedron of  type II in the 
present case). A process such as #13 ---) #16 --) #13 is denoted by #13/16. 

The degenerate double dsd or the 4, 5-pyramidal degenerate processes may be 
found by inspecting the possibilities shown in eq. (4). It appears that each intermediate 
of type III in this equation gives rise to at least one degenerate process, denoted by 
a dagger in eq. (4). Processes without a dagger may in fact only be realised in a trivial 
way (i.e. by first suppressing two edges and subsequently adding the two edges 
which have first been suppressed). For instance, in fig. 5 two edges (denoted by a 
cross) have been suppressed on the starting polyhedron #12, giving rise to #30 (fig. 
5(a)). A deltahedron may be obtained by diagonalising the two square faces o f#30 .  
This may be realised by adding to #30 one of  the following pairs of  edges: {14, 16}, 
{14, 57}, {35, 16}, {35, 57}. The first of  these four possibilities generates a final 
configuration of #12 which is identical to the initial one, since no edges have been 
switched. This process # 12 --) #30 ---) # 12 may be represented by the identity permutation. 
The second and third possibilities are in fact single dsd's, since only one diagonal 
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1 1 1 

3 4 3 C2 4 C2v 
7 

3 4 
C 2 

1 

3 4 

C2 

5 3 4 
Cs C 2 

Fig. 4. Degenerate single dsd of dehahedron #13. 

3 3 

2 4 2 ~ 4  

7 7 ~  5 

6 6 
~12 ~ 2 3  

[al [bl 
Fig. 5. Non-degenerate double dsd of deltahedron #12. 

has been switched. The last possibility gives rise to a deltahedron with no vertex of  
degree 6 (fig. 5(b)). Hence, it cannot be #12. In fact, the overall course of  this last 
possibility is the double non-degenerate dsd #12 ~ #22 ---) #30 ~ #28 ~ #23 (see 
fig. 3). Hence, the process #12 ---) #30 -* #12 may only be realised in a trivial way. 
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Degenerate processes with polyhedra of type III as intermediate are listed in 
figs. 6 to 9. The symbols are the same as in fig. 4. Moreover, a process such as 
# 11 --+ # 14, # 15 --+ # 17 --) # 14, # 15 --+ # 11, where # 14 and # 15 are the only polyhedra 
of type II that can be traversed (see fig. 3) will henceforth be denoted by #11/17. 

From figs. 4 and 6 to 9, it is easy to deduce the permutations or permutat ions-  
inversions transforming the starting deltahedron (left) into the final one (right). The 
results are shown in table 3. The presence of  J (inversion about the center of  mass) 
results from the fact that the starting and final skeleta are enantiomeric. The permutations 
have the same meaning as in ref. [10]. 

Table 3 

Permutations or permutation-inversions for the single arid double 
dsd and the 4, 5-pyramidal processes of the deltahedra 

Type Permutation (Inversion) 

#11/18 double dsd (152) (34) (67) 

# 11/l 7 4, 5-pyramidal (146) (357) 

#13/16 single dsd (16) (35) . J 

#13/21 single dsd (12) (34). J 

#13/18 double dsd (25) (34) (67). J 

#13/27 double dsd (152) (34) (67) 

# 13/32 double dsd (12473) (56) 

#20/30 double dsd (16327) 

#20/37 double dsd (15) (27) (46) 

#20/36 double dsd (13) (27) (45) 

#20/29 4, 5-pyramidal (123) (45) (67) 

#23/36 double dsd (1623) 

From the permutations describing the various degenerate processes listed in 
table 3, it is easy to verify that these processes belong to different modes of  rearrange- 
ments of the deltahedra from which they start. Moreover, it is possible to determine 
the symmetry of the path of steepest descent and transition state (PSD/TS) [10] of  
these rearrangements [ 11 ]. The results are given in table 4, where A, R are the group 
of proper symmetry operations and the point group of the PSD, respectively, whereas 
A T, R T denote similar groups for the TS. The connectivity 6is also given and represents 
the number of configurations reached in one step of  the considered rearrangement, 
starting from a fixed arbitrary configuration [11, 12]. All these rearrangements are 
self-inverse (SI) [13] except for # 13/32, which is a non-self-inverse (NSI) rearrange- 
ment. This may be verified in figs. 4 and 6 to 9 by noting, for instance, that "crossed" 
edges of  the starting deltahedra are equivalent to those of the final one in all rearrange- 
ments but #13/32. This indeed means that the direct and reverse rearrangements 
#13/32 are themselves mutually inverse non-equivalent stereochemical courses. 
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Table 4 

PSD and TS symmetry 

Rearrange- 
ment • ,~ /~ A T R T 

#11/18 2 I ,4 u (37)(46)J A u (15)(36)(47) A T ~  {(15)(34)(67),(37)(46)}J Czv 

#11/17 4 1 /~ ,~ 

#13116 2 1, (25)(36)(47) ,4 

#13121 4 I .4 ,~. 
#13/18 2 I, (25)(36)(47) /'~ ,4 

# 13127 2 I ,4 ,-~ ~ (12)(37)(46) A T C 2 

#13/32 2 I r~ I A T C 1 

#20130 6 1 ,4 ,4 ,4 u (17)(26)J C, 
#20129 6 I ,~ ,4 ~ u (13)(45)J C 3 

#20/37 6 I A ,~ u (15)(27)(46) A T C z 

#20/36 3 I ,4 ~J (24)(57)J 

#23136 10 1, (12)(36)(45) ,4 

.-4" u (16)(35)J C, 

u {(23)(47)(56),(26)(35)}J Cz, 

.4 u (12)(34)J C, 

~ {(37)(46),(25)(34)(67)}J C2v 

w (13)(27)(45) Ayt,.) {(13)(25)(47),(24)(57)}J C2, , 

,4 ,-4 ~ {(13)(26)(45),(16)(23)}J Czv 

(a) 3 ~ 6 . _  ~3 

1 7 
C2v, 

I 7 
C2v C2v 

4 

1 7 1 6 

C2¥ C S 

1 3 

6 5 

C2v 

Fig. 6. (a) Degenerate double dsd, and (b) degenerate 
4, 5-pyramidal process of deltahedron # 11. 
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1 1 1 

3 ~r-' 2 4 3 02 V 4 3 02 4 

1 

3 02 4 1 02 4 

2 

4 3 
C 2 

1 

3 4 

4 

2 
C2 C2 

3 

7 2 

Fig. 7. Degenerate double dsd of deltahedron #13. 

The last column in table 4 refers to the point groups of the TS of each rearrange- 
ment, i.e the maximum symmetry compatible with a simple saddle point TS connected 
to reactant and products by PSDs. In the present case, these TS symmetries coincide 
with the graph symmetries listed in table 1. For instance, the double dsd #11/18 has 
a C2v-TS symmetry (table 4) and the intermediate polyhedron of type Ill, i.e. #18, 
has also a C2v-graph symmetry (table 1). It should, however, be noted that this 
coincidence is not a general rule. A counterexample has recently been discussed [14]: 
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:~2 0/3 0 4 
{a) 7 ~ 5  

5 C3v 

4 4 

5 C s 5 C3v 

:~ 20/37 4 1 3 1 

(b )  ~ : 

3 ~ , , ~ ~  2 7 5 

5 C3¥ C 2 

:~ 20/, 6 6 

4 2 4 2 
/ \ 

[c] 

3 03¥ 3 82¥ 

:~20/ 4 7 

[d) 

3 ~ . ~ " / ' 2  3 1 
5 C3v C s 

6 C3v 

1 

4 2 

6 Car 

5 

. 6 7~ 

4 Car 

Fig. 8. (a,b,c) Degenerate double dsd, and (d) degenerate 
4, 5-pyramidal process of deltahedron #20. 
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1 3 
* * 2 % 6  7 

2 D511 4 C2¥ 6 [[}51.I 

Fig. 9. Degenerate double dsd of dehahedron #23. 

if octacoordinate square antiprisms are assumed to undergo a ~/4 rotaiion of their 
square faces, they traverse an intermediate whose TS-symmetry is D4h but whose graph 
symmetry is O h . 

4. Conclusions 

In this paper, we have established the complete list of degenerate single and 
double dsd and of degenerate 4, 5-pyramidal processes for heptacoordinate deltahedra. 
We have determined the permutational character of these processes. The symmetry 
properties of the paths of steepest descent and transition states of such stereochemical 
events have also been obtained. 

Theoretical considerations [15] have shown that the most stable deltahedra are 
the capped octahedron (#20) and the pentagonal bipyramid (#23). The non-deltahedral 
4-capped trigonal prism (#36) is of comparable stability. 

These three polyhedra, as well as the so-called 4: 3 piano stool, have been studied 
experimentally. The permutational character of the rearrangements of various complexes 
displaying such geometries has been obtained (or can be obtained) from NMR line 
shape analysis (see, e.g. [16-20] and references cited therein). 

It seems interesting to compare the theoretical permutational character of the 
processes studied in the present work to the results of the current experimental work, 
in order to decide whether the observed behaviour is compatible with degenerate dsd 
or 4, 5-pyramidal processes. 

On the other hand, the interconversions of heptacoordinate molecules have also 
been described in terms of the two following pathways [21,22]: 

(a) pentagonal bipyramid (#23) ---) capped octahedron (#20) --) 4-capped trigonal 
prism (#36) with retention of a mirror plane; 

(b) 4-capped trigonal prism (#36) --) pentagonal bipyramid (#23) with retention 
of a twofold axis. 
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The latter possibility (b) is clearly related to the degenerate double dsd shown 
in fig. 9. The former (a) could provide interesting alternatives to degenerate dsd or 
4, 5-pyramidal processes and should also be compared to the results of NMR line 
shape analysis. 

These tasks will be undertaken in the near future. 
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